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A three-dimensional inviscid velocity distribution is selected to mimic the flow
produced at the wall by a three-dimensional vortex convected above an infinite wall.
The main interest is in determining the viscous response of the boundary layer on the
wall to the imposed pressure distribution. It is demonstrated that complex effects occur
in the boundary layer (including the formation of zones of apparent recirculation)
that eventually lead to separation. Solutions are obtained in both a conventional
Eulerian frame of reference and with a three-dimensional Lagrangian method. The
separation takes the form of a sharply focused eruptive tongue of fluid in a manner
consistent with modern asymptotic theories of three-dimensional separation, which
indicate the boundary-layer solution will develop a singularity in the absence of
interaction with the external flow. The unsteady separation structure is similar to that
in two dimensions when viewed in the appropriate direction. The possible relevance
of the results to the dynamics of turbulent boundary layers is described.

1. Introduction
Unsteady separation processes at high Reynolds number have been of interest

for decades. The pioneering work of Van Dommelen & Shen (1980, 1982) revealed
how boundary-layer separation initiates in two-dimensional flows for motion past an
impulsively started circular cylinder. When the external pressure field is prescribed, the
separation process is usually heralded by the appearance of recirculating eddies and
shortly thereafter the boundary layer erupts at a streamwise location near the eddy in
a narrow plume. As anticipated by Van Dommelen & Shen (1982) and Elliott, Cowley
& Smith (1983), the phenomenon is generic for two-dimensional flows, as evidenced
by much subsequent work (see, for example, Cowley, Van Dommelen & Lam 1990;
Degani, Walker & Smith 1998). A detailed and clear description of the separation
process has been given by Van Dommelen (1991); in this process, a fluid particle
on the zero vorticity line within the boundary layer eventually becomes squashed in
the streamwise direction to zero thickness thereby provoking an eruption, which in
two dimensions appears as a knife-edge. Thus, in the absence of a formulation which
permits an interaction with the external flow, the boundary-layer solution develops
a singularity at separation. Because of the abrupt nature of the process and the
sharp focusing in the streamwise direction that occurs, it proves very difficult to
structure a calculation procedure using a conventional Eulerian formulation that can
accurately describe the details of the phenomenon. For this reason, separation events
are now usually computed using a Lagrangian formulation, as originally described
by Van Dommelen & Shen (1982) (see, for example, Degani et al. 1998).
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The situation in unsteady three-dimensional flows at high Reynolds numbers is
rather more complicated and relatively few reliable numerical solutions exist. A
theoretical description of unsteady separation in three-dimensional flows has been
given by Van Dommelen & Cowley (1990). The theory predicts that separation will
occur along a U-shaped ridge in the form of a narrow eruptive tongue, which extends
to an infinite distance from the wall (on the boundary-layer scale) as a fluid particle
is compressed to zero thickness at separation. In a plane normal to both the wall
and the erupting ridge, the separation process was shown to be similar to that
in two-dimensional flows (Van Dommelen & Cowley 1990). The practical problem
of calculating a three-dimensional flow is considerably more complex than in two
dimensions and, in view of the theoretical description of unsteady separation, it
was anticipated that such a calculation would be very difficult using a conventional
Eulerian formulation with a fixed spatial mesh. It may be noted that for two-
dimensional flows, Adams, Conlisk & Smith (1995) and Xiao, Burggraf & Conlisk
(1997), for example, have considered methods which use a time-dependent adaptive
grid that refines the mesh in a region where separation is developing. A key issue
here concerns what feature of the developing Eulerian field should be used to guide
a dynamic mesh refinement. Adams et al. (1995) considered several criteria, such as
the streamwise gradient of the displacement thickness and the blowing velocity at
the boundary-layer edge, and were able to obtain good comparisions with previous
results obtained by Peridier, Smith & Walker (1991), who used a Lagrangian method.
However, at present, the Lagrangian approach appears to be the optimal adaptive
scheme for two-dimensional flows. In three-dimensional separating flows, the issues
of how to structure an adaptive grid in the Eulerian description and what features of
the solution should be used to guide refinement are at least an order of magnitude
more complex. It seems unlikely that an Eulerian method which accurately resolves
the structure of the unsteady three-dimensional separation process will be feasible
in the near future. In this study, the Lagrangian equations are solved numerically
for a number of cases where the boundary-layer solution develops a separation
singularity. A method of determining when the singularity occurs is described and it
is demonstrated that the calculated results are in general agreement with the theory
of Van Dommelen & Cowley (1990).

The particular problems addressed here were motivated by a proposed model of
the events that lead to production of new turbulence near a surface (Smith et al.
1991). It is commonly accepted (Head & Bandyophadyay 1981; Robinson 1991;
Smith et al. 1991; Smith & Walker 1997) that the hairpin vortex is an important
structure in the turbulent boundary layer. A critical issue in turbulent wall-bounded
flows is the determination of the physical process whereby new hairpin vortices are
created near the surface; this process is often referred to as regeneration. Such events
have been observed in a variety of experimental studies (see, for example Smith &
Walker 1997), as well as in detailed examinations of the results of direct numerical
simulations of turbulence at low Reynolds numbers (Robinson 1991). On the basis
of various experimental studies, computational simulations in two-dimensional flows
and an existing theory of three-dimensional separation (Van Dommelen & Cowley
1990), Smith et al. (1991) described a hypothetical process in which a moving hairpin
vortex could provoke a local three-dimensional separation of the turbulent wall layer.
It was argued that this phenomenon would take the form of a thin tongue of fluid,
containing elevated levels of vorticity, that would erupt from the wall layer. In a
subsequent interaction, the erupting tongue would be expected to roll over into a
new hairpin vortex. It may be noted that the theoretical study of Smith & Burggraf
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Figure 1. Schematics of a three-dimensional vortex convecting above an infinite plane wall
for (a) positive circulation +κ , (b) negative circulation −κ .

(1985) had also anticipated that similar events would occur in deep transition and
approaching turbulence in laminar boundary layers.

A goal of this study is to develop a computational means to calculate the onset of
such an eruption and to verify some conjectural aspects of the process described by
Smith et al. (1991). Because the main objective here is to determine the viscous res-
ponse of the boundary layer to a moving three-dimensional disturbance, the external
inviscid flow was selected in an ad hoc manner in order to mimic certain features of
the flow near the wall due to a moving hairpin vortex.

2. The inviscid flow
The rectilinear vortex is a limiting case of vortex motion in two dimensions where

the vorticity is tightly concentrated in a small core region. If such a vortex of positive
circulation κ is located at a distance a from an infinite plane wall in an otherwise
stagnant fluid, inviscid theory predicts that the vortex will convect to the right with
constant speed κ/2a at constant height a above the wall, driven by the image vortex
below the wall. Let all lengths and velocities be made dimensionless with respect to
a and κ/2a, respectively. In a frame of reference convecting with the vortex, the wall
appears to move with constant speed −1 to the left. The boundary layer associated
with this two-dimensional problem has previously been considered by Walker (1978)
and Peridier et al. (1991), who showed that the adverse pressure gradient due to the
vortex rapidly induces boundary-layer separation in the form of an abrupt sharply
focused eruption.

Consider now the more complex configuration shown in figure 1(a) where a three-
dimensional vortex of positive circulation is above the wall in an otherwise stagnant
fluid; the instantaneous shape shown is taken to be periodic in the spanwise direction
with symmetry planes at z = 0 and ±1, etc. In general, a vortex with this initial con-
figuration will start to convect and deform immediately owing to self-induced motion
and the action of the image vortex below the plate. During this evolution, portions
of the vortex may either recede or approach the plate and, once a vortex exhibits
three-dimensional distortions, it is generally not possible to find solutions which
describe a convecting invariant form. The evolution and trajectory of such a vortex
can be calculated through a numerical integration of the Biot-Savart law, provided
certain assumptions are made concerning the nature of the flow in the vortex core.
Many examples of such calculations exist in the literature (see, for example, Moore
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1972; Leonard 1980; Dhanak & DeBernardinis 1981; Ersoy & Walker 1987; Hon &
Walker 1991). The integrations can be very time-consuming as the vortex develops
into complex shapes (Smith et al. 1991) and, in addition, can involve significant
levels of numerical error. It was, therefore, convenient to select an analytical external
inviscid velocity which mimics the distribution that would be expected to be produced
instantaneously by the vortex configuration shown in figure 1(a). In this way, it was
possible to concentrate on the viscous flow development using a well-defined analytic
external velocity field without the additional complications associated with a Biot-
Savart integration.

The velocity field is selected as a generalization of the problem considered by Walker
(1978) and is representative of the velocity field produced by the vortex depicted in
figure 1(a) near the wall and in a frame of reference convecting with the vortex. Let
(x, y, z) denote Cartesian coordinates measuring dimensionless distances (referred to
a) in the streamwise, normal and spanwise directions, respectively, with corresponding
velocity components (u, v, w). The external dimensionless (referred to κ/2a) velocity
field is taken to be

U∞(x, z) = −1 + Ue(x, z), W∞(x, z) = We(x, z), (2.1)

for −∞ <x < ∞ and 0 � z � 1, where

Ue(x, z) =
4

{x − f (z)}2 + 1
, We(x, z) = − 4f ′(z)

{x − f (z)}2 + 1
, (2.2a, b)

and

f (z) = 1
2
(1 + cos(πz))c. (2.3)

The inviscid flow is assumed to convect without change of shape and, in a frame of
reference moving with the disturbance, the wall is taken to move uniformly to the left
with speed −1. Note that the velocity field described by equation (2.1) is irrotational.

In the model flow, the function f (z) is the projection of the vortex in figure 1 in
the (x, z)-plane, while the parameter c is a measure of the level of three-dimensional
distortion in the vortex, with c = 0 being the two-dimensional case; the physical
streamwise length of the distortion is then ca. At the base of each of the vortex legs

U∞ = −1 +
4

x2 + 1
at z = ±1, (2.4)

while in the symmetry plane through the vortex head

U∞ = −1 +
4

(x − c)2 + 1
at z = 0. (2.5)

Thus on z = 0 and z = ± 1, the streamwise velocity is the same as for the rectilinear
vortex (Peridier et al. 1991), but note that the vortex centre on z =0 is displaced
downstream to x = c. The spanwise velocity in equation (2.2) has flow away from the
plane z = 0 and toward a maximum at z = ±0.5 and then decreases toward z = 1; the
strength of the spanwise flow is modelled by the positive parameter c. For increasing
c, the external velocity distribution becomes more three-dimensional and the adverse
spanwise pressure gradient more severe.

If the sense of circulation in figure 1(a) is reversed, the resulting vortex has negative
rotation and, in general, will propagate in the negative x-direction. This case for a
rectilinear vortex has previously been considered by Doligalski & Walker (1984) and
Degani et al. (1998). For a rectilinear vortex of strength −κ at a distance a from the
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Figure 2. Inviscid streamlines near the wall in a frame of reference moving with the vortex.
(a) κ < 0, c = 0.05, (b) κ < 0, c =1.0.

wall, the vortex will propagate in the negative x-direction with velocity −κ/2a. If a
uniform flow of speed U0 is superimposed to the right, the vortex is then convected
to the right with velocity Vc = αU0, where α is the fractional convection rate defined
as α = 1 − κ/(2aU0). In a frame of reference convecting with the vortex, the flow
speed at infinity is (1 − α)U0, and if this is used as a characteristic speed to define
dimensionless variables, the external velocity induced by the moving two-dimensional
vortex near the wall is given by equation (2.4) multiplied on the right-hand side by
−1, for all z (Doligalski & Walker 1984). In the convected frame, the wall appears to
move progressively to the left with speed β =α/(1 − α). As shown by Degani et al.
(1998), the boundary layer under the moving vortex separates from the surface for α

less than a critical value of αc ≈ 0.58 (β ≈ 1.38), with the separation event becoming
stronger and occurring sooner for decreasing α. On the other hand, for a relatively
weak vortex (α > 0.58), the influence of the moving wall dominates the viscous flow
near the wall and separation does not occur.

Here, the case where the three-dimensional vortex is of the type illustrated in
figure 1(b) with the rotation reversed (from figure 1a) is now embedded in a uniform
flow to the right. The model inviscid flow is similar to that described by equation
(2.1), but now the signs are reversed. The general form of the external dimensionless
velocity field given by (2.1) can written

U∞(x, z) = sgn(κ){−1 + Ue(x, z)}, W∞(x, z) = sgn(κ)We(x, z), (2.6)

for either case. The inviscid flow for κ < 0 is believed to be similar to the motion
produced near the wall by a convected hairpin vortex (Smith et al. 1991). The limiting
inviscid streamlines on the surface for κ < 0 are shown in figure 2 for two cases
corresponding to c =1 and c = 0.05 (an almost two-dimensional case) in a frame of
reference moving with the vortex. Note that stagnation points occur in both symmetry
planes. The additional variable that occurs for κ < 0 is the wall speed β , and results for
β = 0.25 and β =0.50 will be considered here; the former case models a slow-moving
vortex close to the wall, while the latter case represents a faster-moving vortex. The
streamwise external velocity for κ < 0 on the symmetry planes is given by equations
(2.4) and (2.5), with each term on the right-hand side multiplied by −1.

The pressure gradients imposed on the boundary layer may be evaluated from

−∂p∞

∂x
= U∞

∂U∞

∂x
+ W∞

∂U∞

∂z
, −∂p∞

∂z
= U∞

∂W∞

∂x
+ W∞

∂W∞

∂z
, (2.7)
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and it is easily confirmed that both gradients are independent of sgn(κ). It can
be shown that ∂p∞/∂x = 0 on the projection of the vortex core x = f (z), where a
local minimum in p∞ occurs for fixed z. Whether the streamwise pressure gradient
is regarded as adverse depends on the local flow direction. For κ > 0, the pressure
increases in the flow direction for all x >f (z) which is thus a region of adverse
streamwise pressure gradient. On the other hand, for κ < 0, the external velocity field
reverses direction and the zone of adverse streamwise pressure gradient occurs behind
the vortex x < f (z). For all cases considered here, a separation event occured in a
region where both the streamwise and spanwise pressure gradients are adverse. It
can be shown that ∂p∞/∂z vanishes along one or more curves in the (x, z)-plane
depending on the magnitude of c; one of these curves intersects x = f (z) at a location
denoted by (xmin, zmin) where a pressure minimum occurs. For the cases with κ > 0,
the external flow moves toward z = 1 and an adverse spanwise pressure gradient
occurs for z > zmin. Conversely for κ < 0, the external flow is toward z =0 and an
adverse spanwise pressure gradient occurs for z < zmin. Thus, although the pressure
distribution is the same for both situations, separation is expected on either side of
(xmin, zmin) depending on sgn(κ) in a region where both pressure gradients are adverse
(see, also Walker 2003). The speed of the moving wall also has an important influence
on the location of separation, and on whether it occurs at all.

3. The boundary layer
In order to determine the viscous response to the inviscid motions described in

§ 2, the viscosity was taken to be switched on suddenly at t = 0. Define a Reynolds
number by Re = |κ |/ν, where ν is the kinematic viscosity; for large Re and time
t > 0, a thin unsteady boundary layer develops on the wall. The three-dimensional
boundary-layer equations in dimensionless variables are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= U∞

∂U∞

∂x
+ W∞

∂U∞

∂z
+

∂2u

∂y2
, (3.1a)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= U∞

∂W∞

∂x
+ W∞

∂W∞

∂z
+

∂2w

∂y2
, (3.1b)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (3.1c)

where y and v are scaled in the usual way with respect to Re−1/2. The boundary
conditions are

u = −1 for κ > 0, u = −β for κ < 0, v = w = 0 at y = 0, (3.2)

where κ refers to the sense of circulation shown in figure 1; in addition,

u → U∞(x, z), w → W∞(x, z) as y → ∞, (3.3)

to match the external flow and

u → UR, (v, w) → 0 as x → ±∞. (3.4)

Here, UR denotes the two-dimensional boundary-layer solution at upstream and
downstream infinity in a frame of reference moving with the vortex; this is given by

UR = −1 for κ > 0; UR(ρ) = −β + (1 + β)erf(ρ) for κ < 0, (3.5)

where ρ is the Rayleigh variable defined by ρ = y/(2
√

t) (Doligalski & Walker 1984).
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In the Eulerian formulation of the problem, it is convenient to define normalized
velocities U (x, y, z, t) and W (x, y, z, t) according to

u(x, y, z, t) = UR(ρ) + sgn(κ)UeU, w(x, y, z, t) = sgn(κ)WeW, (3.6)

where Ue and We are defined in (2.2). The boundary conditions for U and W are

(U, v, W ) = 0 at y = 0; (U, W ) → 1 as y → ∞, (3.7)

for all z.
Conditions are also required in the spanwise direction and near the symmetry

planes (i.e. as z → 0, 1); the velocity components may be written in the form (Ersoy &
Walker 1987; Puhak, Degani & Walker 1995)

u = u(x, y, t) + O(z̆2), v = v(x, y, t) + O(z̆2), w = z̆θ(x, y, t) + O(z̆3), (3.8)

where z̆ denotes z and z − 1 near the planes z = 0 and z = 1, respectively.
Equations (3.1) take the following form on the symmetry planes

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+

∂2u

∂y2
, (3.9a)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ θ2 = U∞

dΘ∞

dx
+ Θ2

∞ +
∂2θ

∂y2
, (3.9b)

∂u

∂x
+

∂v

∂y
+ θ = 0, (3.9c)

where u and v satisfy the same conditions as in equation (3.2) at the wall and, in
addition, θ = 0 at y = 0. Also

u → U∞(x), θ → Θ∞(x) as y → ∞, (3.10)

where U∞(x) and Θ∞(x) in equations (3.9) and (3.10) are given by

U∞(x) = sgn(κ) {−1 + Ue(x)} , Θ∞(x) = sgn(κ)Θe(x), (3.11)

which represent equations (2.6) in the limit z → 0 or z → 1; here, Θe(x) can be
evaluated analytically in (2.2b) by taking the limit of We(x, z)/z as z → 0 or z → 1.

The boundary-layer flow develops for all t > 0 once the no-slip condition is suddenly
applied at t = 0. The initial flow is conveniently described in terms of the following
Rayleigh variables

ρ =
y

2
√

t
, V =

v

2
√

t
, (3.12)

which were introduced into the equations on the symmetry planes and in the interior.
The equations in terms of the variables (U, V, W ) and (x, ρ, z, t) are easily obtained
(Atik 2002).

4. Lagrangian formulation
The boundary-layer solution for a given external flow was integrated forward in

time, and complicated flow topologies were soon found to develop. Eventually, all
solutions considered evolved toward separation with strong updrafts occurring in a
very localized zone. In the Lagrangian description, the independent spatial variables
(ξ, η, ζ ) denote the positions of fluid particles at some initial instant at t = t0 (i.e.
(x, y, z) = (ξ, η, ζ ) at t = t0). Each fluid particle is then identified for t > t0 by its
current position (x, y, z) and its velocity components (u, v, w), which are all functions



22 H. Atik, C. Y. Kim and J. D. A. Walker

of (ξ, η, ζ, t). In the present study, calculations were initially started in Eulerian
coordinates at t =0, then switched over at a time t = t0 to the Lagrangian formulation
and subsequently continued to separation at t = ts . The Lagrangian calculations are
computationally intensive, and it is more efficient to calculate the initial stages of the
motion using the conventional Eulerian formulation when the solution is still well
behaved. As strong local outflows develop and the solution begins to evolve toward a
singularity, the Lagrangian formulation is needed. The switchover time t0 is arbitrary
to some extent; it should be selected well enough in advance of ts so that the Eulerian
field is still smooth, but not so far in advance of ts that remeshing of the Lagrangian
scheme is required (Degani et al. 1998).

The Lagrangian equations for a three-dimensional boundary layer with a steady
mainstream flow are of the form (Van Dommelen & Cowley 1990)

∂φ

∂t
= U∞

∂Φ∞

∂x
+ W∞

∂Φ∞

∂z
+

∂2φ

∂y2
, (4.1)

where φ = u or w and Φ∞ = U∞ or W∞, respectively; U∞ and W∞ are given by
equations (2.6). In Lagrangian coordinates, the normal gradient in equation (4.1) is
defined by (Van Dommelen & Cowley 1990)

∂

∂y
= (xζ zη − xηzζ )

∂

∂ξ
+ (xξzζ − xζ zξ )

∂

∂η
+ (xηzξ − xξzη)

∂

∂ζ
, (4.2)

and the Jacobian of the transformation J is constant, namely

J (x, y, z; ξ, η, ζ ) =
∂ (x, y, z)

∂(ξ, η, ζ )
=

∣∣∣∣∣
xξ xη xζ

yξ yη yζ

zξ zη zζ

∣∣∣∣∣ = 1, (4.3)

where the subscripts denote partial derivatives; this is the continuity equation in
Lagrangian coordinates. The set of equations (4.1) is completed with

∂x

∂t
= u,

∂z

∂t
= w. (4.4)

To obtain the boundary conditions, note that the motion at upstream and down-
stream infinity (i.e. for x = ξ = ±∞) is a two-dimensional plane parallel flow and here
y = η for all t in Lagrangian coordinates. Consequently, the conditions are

u = UR, w = 0 as ξ → ±∞, (4.5)

where UR is given by (3.5) with ρ replaced by η/(2
√

t). As η → ∞, the external
conditions for u and w are defined by (2.6). At the wall (y = η = 0), u and w must
satisfy conditions (3.2). Finally, fluid particles on the wall initially remain there, but
their streamwise positions will change with time, i.e.

x(ξ, η, ζ, t) = ξ − β(t − t0), z(ξ, η, ζ, t) = ζ at η = 0, (4.6)

where β =1 for κ > 0 and is a specified value for κ < 0.
The solution was advanced in time by solving (4.1) and (4.4) for u, w, x and

z subject to the above boundary conditions. At any instant, the normal distance
y(ξ, η, ζ, t) of fluid particles from the surface can be evaluated from the continuity
equation (4.3), which is a first-order equation for y. The characteristics are curves of
constant x and z and are defined by the subsidiary equations for (4.3), i.e.

dξ

xζ zη − xηzζ

=
dη

xξzζ − xζ zξ

=
dζ

xηzξ − xξzη

=
dy

1
. (4.7)
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The characteristic curves for a given time t denote the initial locations of a group of
fluid particles which have all arrived at a specific value of x and z; each characteristic
is therefore a space curve which originates at the wall and traces outward toward the
boundary-layer edge. The solution of (4.7) may be written

y(ξ, η, ζ, t) =

∫ (ξ,η,ζ )

wall

ds√
(xζ zη − xηzζ )2 + (xξzζ − xζ zξ )2 + (xηzξ − xξzη)2

, (4.8)

where s denotes a variable measured along a characteristic curve x(ξ, η, ζ, t)=constant
and z(ξ, η, ζ, t) = constant, starting from the wall (η = y = 0), and passing through the
point (ξ, η, ζ ); this expression gives the normal distance from the wall of a fluid
particle which started at (ξ, η, ζ ) at time t0. If a singularity develops at a later time
(say, at t = ts) at a location denoted (ξ, η, ζ, t) = (ξs, ηs, ζs, ts), then

xζ zη − xηzζ = xξzζ − xζ zξ = xηzξ − xξzη = 0. (4.9)

As discussed by Van Dommelen & Cowley (1990), this condition occurs when the
vectors ∇x and ∇z become parallel at a point, namely,

∇x = λ∇z, (4.10)

for some constant λ (to be found) so that the Jacobian J in (4.3) vanishes. For oblique
coordinates in the (x, z)-plane defined by q = x − λz, it follows that ∇q = 0. In this
direction, a fluid particle is compressed to zero thickness (Van Dommelen & Cowley
1990; Van Dommelen 1991), and the separation process is similar to that in two
dimensions. This direction in the (x, z)-plane will subsequently be referred to as the
q-direction, while that normal to it is referred to as the qn-direction. To compensate
for this compression process, the fluid particle at separation must grow in the normal
direction, by continuity. A particle is therefore eventually squeezed out of the boundary
layer, being displaced an infinite distance from the wall (on the boundary-layer scale)
toward the outer inviscid-flow region. In this process, a singularity evolves in the
normal velocity v at that streamwise and spanwise location, indicating that the
boundary layer starts to erupt over a region of zero thickness in the q-direction.
The criterion (4.10) for evaluation of a singularity is not easily implemented in a
computational scheme and an alternative method of detecting the singularity in the
computations is described in the Appendix.

The Lagrangian formulation for the symmetry planes at z = 0 and 1 is defined
similarly. Particles on a symmetry plane remain there for all time, except perhaps
near isolated points. The spanwise particle position z̆ (see (3.8)) is anticipated to be
a regular function of time which can be written in the form

z̆(ξ, η, ζ, t) = ζ̆ z̃(ξ, η, t) + · · · , (4.11)

where ζ̆ denotes ζ near ζ = 0 and ζ̆ denotes ζ − 1 near ζ =1; evidently

∂ z̆

∂ξ
=

∂ z̆

∂η
= 0 at ζ = 0, 1, (4.12)

and it follows from (4.3) that on the symmetry planes, the Jacobian is of the form

J = zζ J2 = z̃(ξ, η, t)J2, (4.13a)

where J2 denotes the two-dimensional Jacobian on each of the symmetry planes,
defined by

J2 = xξyη − xηyξ . (4.13b)
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It is easily shown that the boundary-layer equations on the symmetry planes in (3.9)
are given in Lagrangian coordinates by

∂φ

∂t
= −λ1φ + U∞

dΦ∞

dx
+ λ2 +

∂2φ

∂y2
, (4.14)

accompanied by

∂x

∂t
= u,

∂ z̃

∂t
= θz̃, (4.15a, b)

where φ = u or θ and Φ∞ = U∞ or Θ∞, respectively. U∞ and Θ∞ and their derivatives
are known functions of x, defined by (3.11), and λ1 and λ2 are given by

λ1 = λ2 = 0 for φ = u; λ1 = θ, λ2 = Θ2
∞ = Θ2

e for φ = θ. (4.16)

In addition, the normal gradient is given by

∂

∂y
=

1

J2

(
xξ

∂

∂η
− xη

∂

∂ξ

)
, (4.17)

and the continuity equation (3.9c) for the symmetry planes is J2z̃ =1. Note that J2

and z̃ are initially unity at t = t0 from the initial condition (x, y)t=t0 = (ξ, η), but J2

changes with time as z̃ changes according to (4.15). The boundary conditions for the
equations on the symmetry planes are

u = −1 for κ > 0, u = −β for κ < 0; θ = 0 at η = 0, (4.18a)

(u, θ) → (U∞, Θ∞) as η → ∞; (u, θ) → (UR, 0) as ξ → ±∞, (4.18b)

where UR is given by equation (3.5) with ρ replaced by η/(2
√

t), and the streamwise
positions on the wall of the fluid particles are

x = ξ − β(t − t0) at η = 0. (4.19)

At any time step, the normal distance y(ξ, η, t) can be calculated according to

y(ξ, η, t) =

∫ (ξ,η)

wall

J2√
x2

ξ + x2
η

ds, (4.20)

which is similar to (4.8), but the integral is now along a characteristic x(ξ, η, t) =
constant on either symmetry plane, starting from the wall (η = y = 0), and passing
through the point (ξ, η). For a singularity to develop in the x-field on either of
the symmetry planes at a subsequent time t = ts at a location (ξ, η) = (ξs, ηs), the
condition xξ = xη =0 must occur (Puhak et al. 1995). In all of the present calculations,
a singularity occurred, but always in the interior 0 <z < 1 rather than on either
symmetry plane.

It is convenient for computational purposes to work in domains of finite extent and,
for the Eulerian problem, the streamwise and normal coordinates x and ρ defined
in the ranges (−∞, ∞) and (0, ∞) were transformed to the finite ranges (−1, 1) and
(0, 1), respectively, by

x = cx tan(πx̂/2), ρ = cy tan(πρ̂/2). (4.21)

The spanwise coordinate is defined in 0 � z � 1 and a transformation is not necessary.
Here, cx and cy are the streamwise and normal expansion factors, respectively, which
control the physical grid spacings in each direction; smaller values of cx and cy
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imply grids in the physical domains which are concentrated near x = 0 (i.e below the
vortex) and y = 0 (i.e. at the wall). The two Lagrangian independent variables ξ and η

(defined in the ranges (−∞, ∞) and (0, ∞)) and the dependent Lagrangian variables x

and y (defined in the ranges (−∞, ∞) and (0, ∞)), respectively, were also transformed
to the finite ranges in the computational domain according to

ξ = cx tan(πξ̂ /2), η = cy tan(πη̂/2), (4.22a)

x = cx tan(πx̂/2), y = cy tan(πŷ/2). (4.22b)

The other independent and dependent variables ζ and z for the spanwise coordinate
range from 0 to 1. Here, cx and cy are the streamwise and normal expansion
factors similar to those used in Eulerian coordinates; as a result, the computational
coordinates have −1 � (ξ̂ , x̂) � 1 and 0 � (η̂, ζ, z) � 1.

5. Numerical methods
The boundary-layer equations in both Eulerian and Lagrangian coordinates were

solved using a Crank–Nicolson method and a simple ADI (alternating–direction–
implicit) method for sweeping the mesh at a given time with a second-order accurate
upwind–downwind difference scheme for terms involving the first-order partial deriva-
tives of x and z in (4.1). The method is similar to that described by Peridier et al.
(1991) and Degani et al. (1998), but is second-order accurate in both time and space
(Atik 2002).

The numerical calculations were started impulsively from rest (t = 0) in computa-
tional Eulerian coordinates (x̂, ρ̂, z), using the transformed forms of (3.1) for U, V, W ,
in addition to (3.9) for the symmetry planes, using the transformations (4.21). During
the course of an iteration at each time step, the normal velocity V was computed by
using a Simpson’s integration method. Later, at some time t = t0, the calculations were
switched to computational Lagrangian coordinates (ξ̂ , η̂, ζ ) and then continued until
the evolution of a separation singularity at ts; the calculated Eulerian velocity field
was used as the initial flow field at t0 for the Lagrangian calculations. The equations
used in the Lagrangian coordinates are the transformed forms of (4.1)–(4.4) for φ = u

or w, in addition to (4.14)–(4.17) for the symmetry planes, with the computational
coordinates given in (4.22).

Let tf be the time at which a given Eulerian calculation fails; the switchover time
t0 in general was chosen as t0 > tf /2, but as close as possible to tf provided that the
Eulerian solution field was still sufficiently smooth. This is because calculations in
the Lagrangian frame are very time-consuming, particularly in three dimensions. At
the switchover time, the spatial meshes were matched as follows. Since y = 2

√
t0ρ = η,

then

2
√

t0cy,E tan(πρ̂/2) = cy,L tan(πη̂/2). (5.1)

Thus, if cy,L = 2
√

t0cy,E , the grids will match at the switchover time t0, where cy,E and
cy,L are the normal expansion coefficients used in the Eulerian and Lagrangian coordi-
nates, respectively. The values of cx and cy were selected pragmatically and typical
values used in the calculations where cx = 1.0 and cy,E =1.0.

Upon completion of the first sweep for φi,j,k = ui,j,k and wi,j,k of the entire mesh
by solution of a sequence of tridiagonal matrix problems along lines of constant ξ̂ , η̂

and ζ , the streamwise and spanwise particle positions in the current time plane (t)
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were calculated from the following finite-difference approximation to (4.4)

x̂ = x̂∗ + �tσu, z = z∗ + �tw, (5.2)

at a typical mesh point (i, j, k), where

σ =
2 cos2(πx̂/2)

πcx

. (5.3)

The overbar denotes a simple average value between the current and previous time
planes; the asterisk represents the value at the previous time plane (t − �t). Similarly,
on the symmetry planes, sweeps for φi,j = ui,j and θi,j along lines of constant ξ̂ and
η̂ were followed by advancing the solution of (4.15) for the new streamwise particle
positions and the Jacobian J2, respectively; since J2ẑ = 1, (4.15b) can be written as

J2 − J ∗
2

�t
= −J2θ, (5.4)

evaluated at a typical mesh point (i, j ). The iteration process was continued at a time
step in order to achieve a specified minimum error in computing Φ or φ at each
mesh point, i.e. |1 − φp/φ| <ε, where φp is the previous iterate and ε is a specified
relative error, taken here to be 10−6. Note that this condition requires a tight level of
convergence at each step. With successive iterates of φi,j,k converged at every mesh
point, the numerical integration was then advanced to the next time plane t + �t;
typically, 4 to 6 iterations were required per time step.

During the course of a Lagrangian calculation, contours of x̂, z, u, w and instan-
taneous streamlines were periodically plotted to see if any severe wiggles or distortions
occurred. The purposes of these periodic examinations were: (i) to check out whether
any unrealistic situations or numerical instabilities had developed in the calculation
and (ii) to determine if a remeshing of the entire grid mesh was necessary in
Lagrangian coordinates. One important feature of Lagrangian calculations for the
developing boundary-layer flow is the behaviour of the contours of constant x (or
constant x̂) and z. When these fields develop a stationary point according to the
criterion (

∂ x̂

∂ζ

∂z

∂η̂
− ∂ x̂

∂η̂

∂ z

∂ζ
,

∂ x̂

∂ξ̂

∂ z

∂ζ
− ∂ x̂

∂ζ

∂z

∂ξ̂
,

∂ x̂

∂η̂

∂ z

∂ξ̂
− ∂ x̂

∂ξ̂

∂ z

∂η̂

)
→ 0, (5.5)

which is just (4.9) in terms of the computational variables (ξ̂ , η̂, ζ ), a singularity occurs
in the boundary-layer solution. This must be the terminal point ts in the numerical
integrations in the Lagrangian coordinates; the time step �t was gradually reduced
as the calculations started to show clearly the evolution of such a stationary point.
A stationary point can also develop on either of the symmetry planes at z = 0 and 1,
as (xξ , xη) → 0 (see (4.20)); however, this situation did not occur in any of the cases
considered. The evolution of a singularity was detected in the manner described in
the Appendix.

6. Calculated results
Two types of three-dimensional boundary layers were considered corresponding

to κ > 0 and κ < 0. For κ > 0, there is one parameter c associated with the inviscid
flow (2.1) which is effectively an aspect ratio describing the streamwise length of the
three-dimensional distortion relative to the spanwise spacing. In the limit c → 0, the
motion is two-dimensional and a singularity for the vortex of positive rotation occurs
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c tf t0 ts xs zs

0.05 0.744 0.6 0.94 0.14 0.59
0.1 0.723 0.6 0.82 0.13 0.54
0.2 0.584 0.5 0.61 0.16 0.55
0.5 0.281 0.24 0.28 0.30 0.58
1.0 0.133 0.11 0.13 0.42 0.61

Table 1. Calculated results for the vortex of positive rotation showing separation location
(xs, zs) and separation time ts; tf denotes failure time of the Eulerian computation and t0 is
the time when a switch to Lagrangian coordinates was made.

for ts ≈ 0.989 (Peridier et al. 1991). Increasing c gives rise to enhanced spanwise
motion and this was generally found to hasten separation. Each calculation can
require several weeks of computing time on a single-processor workstation, and most
of the calculations were carried out on a Cray T3E using up to 64 processors. A
number of meshes were used as a check on the accuracy and the results shown
here are based on a mesh of (301 × 201 × 201) in the (x, y, z)-directions, respectively.
Preliminary calculations with mesh sizes twice as large were done to estimate a suitable
switchover time (t0) to the Lagrangian calculations, as well as to provide a check on
the accuracy of the more refined calculations. A number of different time steps were
also used as a check on the accuracy. During the course of a calculation, a very
small time step (�t) was used in the initial stages in Eulerian coordinates (typically
�t = 0.0005) because the initial variations with time are relatively large. After t = 0.01,
the time step was then progressively increased to �t = 0.001 and remained unchanged
for most of the integration. Towards the end of a calculation near ts , the time step
was again reduced progressively from �t = 0.001 to smaller values (typically in the
range 0.0001 � �t � 0.0005). The singularity time ts can be estimated from the time
tf at which the Eulerian calculation fails. The need for reduction of the time step to
very small values as a Lagrangian calculation approaches ts is because high accuracy
is needed in the algorithm for locating the separation point (see the Appendix). A
Lagrangian calculation can proceed without complication beyond the separation time
and thus it is necessary to take small time steps near the end to determine a precise
value of ts .

6.1. The vortex of positive rotation

Calculations were carried out for c = 0.05, 0.1, 0.2, 0.5 and 1 to determine the effect
of an increasing level of three-dimensional flow. The calculated separation times and
locations for each case are listed in table 1. The separation process always develops at
locations well above the surface. It may be noted that for the almost two-dimensional
case c = 0.05, the separation time is close to the value ts =0.989 calculated by Peridier
et al. (1991) and for an increasing level of three-dimensionality in the external flow,
the separation time decreases.

The issue of what should be plotted to illustrate the unsteady flow development is
a difficult one. On the symmetry planes, particle traces represent the instantaneous
streamlines. On these planes, w = 0 and fluid particles cannot leave the plane except
at isolated points. In figure 3, some typical results are shown for the almost two-
dimensional case of c = 0.05. In each graph, there are two saddle points and one
spiral node; the flow leaves the plane z = 0 at the node and moves toward the plane
at z = 1; the flow enters z =1 at the node. Note that the streamlines have developed



28 H. Atik, C. Y. Kim and J. D. A. Walker

(a)

y

–4 –2 0 2 4
0

2

4

6

8
z = 0 t = 0.4 (b)

–4 –2 0 2 4
0

2

4

6

8
z = 0 ts = 0.95

(c)

y

–4 –2 0 2 4
0

2

4

6

8
z = 1 t = 0.4 (d )

–4 –2 0 2 4
0

2

4

6

8
z = 1 ts = 0.95

x                                                                                   x

Figure 3. Instantaneous streamlines on the symmetry planes at selected times
for κ > 0 and c = 0.05.
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Figure 4. Instantaneous streamlines at the singularity time for c = 0.2
for (a) z =0 and (b) z = 1 (the black dot indicates a node).

a prominent kink by t = ts on z =1 in figure 3(d), while a similar but less developed
behaviour occurs on z = 0 in figure 3(b). As indicated in table 1, separation occurs in
the interior (and closer to the plane z = 1) where a sharp spike occurs in the instan-
taneous streamlines and the displacement thickness. The flow pattern developments
on the symmetry planes are similar for the case c = 0.1, but begin to change somewhat
for c =0.2, as shown in figure 4 where instantaneous streamlines on the symmetry
planes are shown at the singularity time. Again, a swirling focus develops on both
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Figure 5. Instantaneous streamlines on the symmetry planes for c =0.5
for (a) z = 1 and (b) z = 0 at the singularity time ts =0.28.

z = 0 and 1, but in addition there is a nodal point which is not a focus on z = 1.
This feature is indicated as a large block dot; it occurs at an early stage in the
computations near the wall and moves progressively away from the surface; here, the
flow is directed into the plane z = 1. At separation, there is no spiky behaviour in
either plane. Finally, the case c = 1 is considered in figure 5. At the singularity time,
there is no indication of swirling motion on z = 0. The focus on z = 1 appears at a
fairly early stage and by t =0.13 the spiralling motion has grown substantially in the
normal direction. There is, however, no indication on either symmetry plane of the
spiky behaviour that is occurring at this stage in the interior.

It is less clear how to illustrate the developing flow structure in the interior region
0 < z < 1. Instantaneous three-dimensional streamlines can be easily plotted but
appear as a ‘sphagetti-like’ entanglement which is almost impossible to interpret.
An alternative, which is sometimes used in experimental flow visualization, is to
consider the instantaneous velocity field in a plane. Some examples of this procedure
applied to the present results for c = 0.5 are shown in figure 6, where instantaneous
streamlines of the in-plane velocity field are given in different planes (normal to
the wall) between the symmetry planes. Clearly, there is a suggestion of apparent
recirculating flow in some of these slices. However, the graphs are misleading to an
extent since the spanwise velocity is non-zero at most points and so there is motion in
and out of all of these planes. Apparent recirculation can also be seen in a variety of
other planes for these flows, including some of those taken at constant x near x =0
and x = 1. Various other sets of planes were considered in an attempt to discern the
possible form of the flow structure that was developing under the influence of the
external pressure gradient; these attempts were unsuccessful and in agreement with
Dallmann (1988), it may be concluded that the usefulness of two-dimensional slices of
these developing three-dimensional flows is questionable. It is of interest to note that in
the latter stages of the calculations stagnation points develop. For the strongly three-
dimensional flows, i.e. for c = 0.2, 0.5 and 1.0, two stagnation points were observed to
develop within the computational domain. For weakening three-dimensionality, i.e.
for the cases c = 0.05, 0.1 only one stagnation point appeared during the course of the
integrations. As an example, critical points for the case c = 1.0 at t = ts were located
at (−0.94, 0.30, 0.89) and (0.68, 0.93, 0.64); while the single critical point for the case
c = 0.1 was at (0.35, 2.5, 0.66). These stagnation points normally appear close to the
symmetry plane z = 1 and then move slowly into the domain and drift upward. For
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Figure 6. Instantaneous in-plane streamlines in various planes for c = 0.5
at ts for (a) z = 0.26, (b) z = 0.393, (c) z = zs = 0.58, (d) z = 0.793.

example, for the case c = 0.1, the stagnation point is at (0.48, 1.04, 0.81) when t = 0.4
and at (0.36, 2.3, 0.67) when t = 0.7. Eventually, separation occurs in the vicinity of
the stagnation points in all cases, but still an O(1) distance away. These unsteady
stagnation points do not seem to be useful in elucidating the possible unsteady flow
structure and also do not appear to be associated with the eventual location of the
separation point.

Another common means of characterizing three-dimensional flow is to consider
the limiting streamlines on the surface. Near the surface in the laboratory frame of
reference

u ≈ −yωz + · · · , w ≈ yωx + · · · , (6.1)

where the vorticity components are defined by

ωx =
∂w

∂y
, ωz = −∂u

∂y
, (6.2)

and in (6.1), ωx and ωz are evaluated on the wall at y = 0. The limiting streamlines
and vortex lines on the surface through any point on the surface are evaluated by
integration of the equations

dz

dx
= −ωx

ωz

∣∣∣∣
y=0

,
dz

dx
=

ωz

ωx

∣∣∣∣
y=0

, (6.3)

respectively, through various points in the (x, z)-plane. Both sets of trajectories are
orthogonal and are shown in figure 7 at the singularity time ts for representative cases
of c = 0.1 and c = 0.5. On these plots, there is a node and a saddle point, each of which
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Figure 7. Limiting streamlines and vortex lines on the wall at separation for c = 0.1
(a) streamlines, (c) vortex lines and c =0.5, (b) streamlines and (d) vortex lines.

is denoted by a black circle. These critical points generally appeared simultaneously
at an earlier time in the calculation. The general change in topology from the
almost two-dimensional case c = 0.1 to a strongly three-dimensional flow for c = 0.5
is suggested in these plots. For c = 0.5, the node and the saddle point are ultimately
connected directly by a limiting streamline (often referred to as a line of separation;
see, for example Tobak & Peake 1982). It may be noted that it is well-known from the
two-dimensional case that the ‘line of separation’ in the wall shear is fundamentally
not the same as the actual separation position, even though they are usually relatively
close to one another. In each of these plots, the projection of the vortex core in
the inviscid flow above (i.e. x = f (z)) is shown as a broken line and the projection
of the actual separation point is shown as a cross. Since unsteady separation is a
phenomenon which generally develops above the wall (Van Dommelen & Cowley
1990), it is not suprising that neither the limiting streamlines nor the wall vortex
lines are useful in determining the eventual location of separation or the occurrence
of the separation event that has developed aloft. Note that the surface streamlines
and vortex lines exhibit regular behaviour even at separation, as originally noted by
Van Dommelen & Cowley (1990).

Although the appearance of swirling motion in some planes seems to be an indicator
that a separation event may occur at a subsequent time, this type of criterion is poorly
defined and in some situations is not reliable. The best indication that separation is
imminent may be observed by plotting the surfaces ωx = 0 and ωz = 0. When these
surfaces intersect they do so in a three-dimensional space curve C, in general, and when
this happens a crisis situation exists for the boundary layer since now there is a line of
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Notice that surface B̂ = 0 has not yet appeared at t = 0.115. All three surfaces touch at a single

location (ξ̂s , η̂s , ζ̂s) at ts = 0.13.

fluid particles for which both vorticity components are zero. It is somewhere along this
curve C where a fluid particle is eventually compressed to zero thickness at separation.
A typical situation observed in the present calculations is shown in figure 8 for c = 1.0
at t = 0.12 (which is in advance of separation time ts = 0.13). Note that the surface
ωx = 0 extends through the symmetry plane z = 1 to the region z > 1; this surface
appears at an early stage in the calculations and expands mainly in the x-direction.
The surface ωz = 0 appears at a later stage immediately intersecting the surface
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ωx =0. The surface ωz = 0 then expands in both directions with time. The reason that
the intersection is an important event can be understood by extension of an argument
due to Van Dommelen (1991) for two-dimensional flows.

At the initiation of the motion, ωx is everywhere positive and ωz is everywhere nega-
tive in the boundary layer. At the wall, it follows from equations (3.1a) and (3.1b)
that the surface vorticity fluxes are

qwx = −∂ωx

∂y

∣∣∣∣
y=0

= −∂p∞

∂z
, qwz = −∂ωz

∂y

∣∣∣∣
y=0

=
∂p∞

∂x
, (6.4)

where p∞(x, z) denotes the (steady) external pressure field. In regions where p∞
increases in the spanwise direction, eventually a volume where ωx < 0 will diffuse
from the wall into the region above where ωx > 0. Similarly, in portions of the (x, z)-
plane where the streamwise pressure gradient is increasing in x, a volume of positive
ωz eventually penetrates into the zone where ωz < 0 above. The two surfaces ωx =0
and ωz = 0 define the outlines of these two volumes and when the surfaces intersect
in a space curve C, a separation event is expected at finite time. Since both vorticity
components are zero there, the curve C will be referred to as the zero vorticity line.
With the passage of time, the zero vorticity line will be convected into the outer regions
of the boundary layer where the flow processes are essentially inviscid; the vorticity is
constant along C and the majority of C (at locations away from the surface) is now
a material line. At this stage, the pressure field (which initiated the sequence) and the
viscous terms fade in importance and convection becomes dominant. Then, along C

the momentum equations (3.1a) and (3.1b) become

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
≈ 0,

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
≈ 0. (6.5a, b)

As noted by Van Dommelen (1991), (6.5a) for two-dimensional flow (w = 0) is known
as Burgers’ equation, which is often used to model shock formation in insteady one-
dimensional gas dynamics. Because the majority of C is a material line, fluid particles
along C are trapped there; however, according to (6.5), the velocity components
of each particle along C are conserved. Under certain conditions on the sign of
various derivatives, it can be shown that a particle collision on C will occur and a
fluid particle at separation is eventually compressed to zero thickness. A referee has
suggested that the collision is not normally in the direction of the curve C, but in a
direction oblique to it, as a particle on C collides with a particle immediately next
to it. In any event, it was verified that separation took place on C in all the present
results. Since the compressed particle cannot lengthen toward the wall, it must do so
toward the mainstream in what appears to be a needle-like spiky eruption. It is this
complex behaviour at separation which necessitates a prior switch to the Lagrangian
formulation.

The issue of how to determine when a separation event occurs is now taken up. The
condition (4.10) given by Van Dommelen & Cowley (1990) describes the requirement
for the evolution of a singularity in the continuity equation. This condition, however,
is difficult to detect in a computational scheme since it need not occur exactly at a
mesh point. Here, an alternative approach was developed using conditions (5.5) and
the results developed in the Appendix. In computational variables, the conditions
for a stationary point are given by Â = B̂ = Ĉ = 0 at ts in Lagrangian coordinates,
where Â, B̂ and Ĉ are defined in the Appendix. The three surfaces Â, B̂ and Ĉ are
related to the vorticity components ωx = −∂u/∂y and ωz = ∂w/∂y. In terms of the
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computational Lagrangian variables

ωz = −Ω

[
Â

∂

∂ξ̂
+ B̂

∂

∂η̂
+ Ĉ

∂

∂ζ

]
u, ωx = Ω

[
Â

∂

∂ξ̂
+ B̂

∂

∂η̂
+ Ĉ

∂

∂ζ

]
w, (6.6a)

where

Ω =
2

πcy

{
cos

(
1
2
πξ̂

)
cos

(
1
2
πη̂

)
cos

(
1
2
πx̂

)
}2

. (6.6b)

It follows that when Â = B̂ = Ĉ = 0, both vorticity components are simultaneously
zero.

Figure 9 illustrates the three surfaces Â= 0, B̂ = 0 and Ĉ = 0 in varying perspectives
at t = 0.115, 0.12 and ts = 0.13 in three-dimensional computational space (ξ̂ , η̂, ζ ). For
this particular case, the switchover from Eulerian to Lagrangian calculations was done
at t = 0.11. The surfaces Â= 0 and Ĉ = 0 are present at t = 0.115 and grow rapidly
in the normal direction; the surface B̂ =0 is not yet present. The surface B̂ = 0 has
a thin oval shape and eventually appears aloft from the wall; it grows in the normal
direction but never touches the wall, unlike the other two surfaces that appear at the
wall surface initially and then grow outward. The surfaces Â= 0 and B̂ = 0 exhibit
similar behaviour to the contours −∂x̂/∂η̂ = 0 and ∂x̂/∂ξ̂ =0 in two-dimensional
separation problems, where the contour ∂x̂/∂η̂ = 0 appears attached to the wall and
the contour ∂x̂/∂ξ̂ = 0 appears aloft (see, for example Degani et al. 1998). The three
surfaces Â= 0, B̂ = 0 and Ĉ =0 grow in size with time and eventually intersect one
another at a point denoted by ξ̂s , η̂s, ζs at ts , as shown in figure 9(c). Once the instant
(ts) and the local position (ξ̂s , η̂s, ζs) where all the three surfaces vanish simultaneously
was located, a singularity had been detected and the Lagrangian calculation was
terminated (see the Appendix).

Boundary-layer growth can be observed through the temporal development of the
displacement thickness. There are two components of displacement thickness in three
dimensions, i.e. δ∗

x(x, z, t) and δ∗
z (x, z, t), defined here in terms of the velocities in the

laboratory frame of reference by

δ∗
x =

∫ ∞

0

(
1 − ul

U∞,l

)
dy, δ∗

z =

∫ ∞

0

(
1 − wl

W∞,l

)
dy, (6.7)

where the subscript l denotes the laboratory frame of reference. For the vortex with
positive rotation (κ > 0), it is possible to use normalized velocities U and W in both
Eulerian and Lagrangian calculations and the velocities in the laboratory frame are
ul = u + 1 = UUe and U∞,l = U∞ + 1 =Ue for the streamwise velocity and wl = WWe

and W∞,l = We for the spanwise velocity. Thus, (6.7) becomes

δ∗
x =

∫ ∞

0

(1 − U ) dy, δ∗
z =

∫ ∞

0

(1 − W ) dy. (6.8)

For the Lagrangian calculations, δ∗
x and δ∗

z in (6.8) were evaluated by solving the
continuity equation along each characteristic curve from the wall in the computational
domain (x̂, z) (see the Appendix).

The temporal development of δ∗
x is illustrated in figure 10 in computational

coordinates. As the boundary layer responds to the external pressure gradients,
δ∗
x develops a rising ridge which is highest in the middle of the span near where the

singularity eventually occurs at ts; the behaviour of δ∗
z is similar, but is not shown

here. Explosive boundary-layer growth finally occurs as t → ts = 0.28 and at xs = 0.30,
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Figure 10. Temporal development of the displacement thickness δ∗
x for c = 0.5.
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Figure 11. (a) level contours of δ∗
x at separation for c = 0.5 and (b) temporal development of

δ∗
x in the q-plane (t = 0.05, 0.1, 0.2, 0.28).

zs = 0.58 and is shown in the last plot of figure 10. This is the behaviour described
on a theoretical basis by Van Dommelen & Cowley (1990). The level contours of
δ∗
x at separation are shown in figure 11. An abrupt and substantial increase of the

displacement thickness along a narrow ridge between t = 0.2 and ts =0.28 may be
observed in figure 11(b) over a very narrow streamwise range. The plotted development
is in a plane that will be described as the q-plane. This plane is oriented normal to the
wall and in the q-direction defined in connection with (4.10). The q-plane slices the
eruptive ridge shown in figure 10(c) in a direction normal to the ridge. In the q-plane,
the separation event appears similar to that in two dimensions (see, for example
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Figure 12. Projection of vortex core (i.e. f (z)) in the (x, z)-plane showing separation
locations for (i) c = 1, (ii) c = 0.5, (iii) c = 0.2, (iv) c =0.1 for κ > 0.

Peridier et al. 1991) as predicted by Van Dommelen & Cowley (1990). Lastly, in
figure 12, the location of separation in the (x, z)-plane is shown for the four different
cases. The separation location is shown as a small black circle and the small broken
lines are the qn-direction defined previously (as normal to the q-direction); the broken
lines thus indicate the longitudinal orientation of the erupting tongue at separation.
It is evident that with increasing three-dimensionality, the separation event occurs
closer to the vortex core and along a ridge that is closer to being parallel to the local
axis of the vortex (i.e. x = f (z)).

In the theoretical structure described by Van Dommelen & Cowley (1990), the
displacement surfaces near separation should thicken proportional to (t − ts)

−1/4 as
t → ts and thin proportional to (t − ts)

3/2 and (t − ts)
1/2 in the q- and qn-directions,

respectively. The qn-direction can be seen easily from the contour plots of δ∗
x as seen

in figure 11(a); at separation, the contour lines of δ∗
x are parallel and very close to

one another and a line parallel to these lines defines the qn-direction. The q-direction
is perpendicular to the qn-direction. The q-direction was also evaluated by confirming
that at separation there is a constant λ such that (4.10) is satisfied. To confirm the
behaviour predicted by Van Dommelen & Cowley (1990), contours of the maximum
displacement thickness were plotted at a sequence of times just prior to a separation
event. These contours are closed curves and the thickness of the contour in the q-
and qn-directions was estimated at each time. The growth in δ∗

x was consistently
observed to behave according to (ts − t)−1/4 and, for example, for c =0.5 it was found
that δ∗

x ≈ 2.9 × (ts − t)−1/4. Similarly, the thinning in the q- and qn-directions was
broadly consistent with the scalings predicted by Van Dommelen & Cowley (1990)
and for c = 0.5, the thinning in the q- and qn-directions was observed to behave as
1.5 × 103(ts − t)3/2 and 49 × (ts − t)1/2. These estimates of the boundary-layer growth
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were obtained by least-squares curve fits to the numerical data and the exponents
were consistently found to be within 1% of the values quoted here. Note, however,
that the surface near the sharp tip has almost zero thickness and is very difficult to
resolve accurately.

Near the location of the maximum displacement thickness at t = ts , the contour
lines in (x̂, z) shrink to a very thin region (see figure 11a). The difference from two-
dimensional flows is that the spike occurs at a point (as opposed to a knife edge
in two dimensions) and the ridge falls away to either side in the qn-direction. One
problem associated with this erupting tongue is that it was essentially impossible
to compute a smooth surface near the tip. Points on the surfaces for δ∗

x and δ∗
z

are obtained by the numerical integration method described in the Appendix along
characteristic curves that originate on the wall. A characteristic from some location
on the wall tracks upward to the boundary-layer edge and the values obtained define
a point on the surfaces for δ∗

x and δ∗
z . Because the surface near the tip of the tongue

has almost zero thickness and is sharply rising, it proves very difficult to adjust
the starting locations of the characteristic integrations to define precisely the upper
extremities of the tongue. For this reason, the definition of the tip of the tongue
tends to be somewhat ragged, as may be confirmed upon very close examination of
figure 10.

6.2. The vortex of negative rotation

This case mimics a vortex of negative rotation (κ < 0) convecting in a uniform flow
above a wall and models the motion at the wall induced by a convected hairpin vortex.
In a frame of reference moving with the vortex, u = −β at y = 0 (i.e. the wall moves
uniformly to the left with speed −β); here, β is related to the fractional convection
rate α of the vortex by β = α/(1 − α) for a two-dimensional vortex (Doligalski &
Walker 1984). The range of interest is 0 � α � 1 (or 0 � β � ∞) as described in
§ 2.2, but only two sets of results will be described here corresponding to β = 0.2
and β =0.5. The case β = 0.2 may be viewed as a strong vortex moving at about
α = 1/6 of uniform flow speed in which it is embedded. The case β = 0.5 can be
regarded as a somewhat weaker vortex moving at α = 1/3 of the uniform flow speed.
Both values of α are well below the critical value αc = 0.58 for which separation is
suppressed in a two-dimensional flow by the influence of the moving wall and thus
separation is expected here in both sets of results. The inviscid surface streamlines
are as shown in figure 2 (the flow direction is reversed from the previous cases of
κ > 0).

As in the case of κ > 0, the solutions for κ < 0 were computed with at least two sets
of mesh sizes and several time steps as a check on the accuracy. Calculated results are
given in table 2 for the position and time of separation. Note that the faster moving
vortex generally produces separation at a later time for the almost two-dimensional
cases (e.g. c =0.1). In such cases, the adverse streamwise pressure gradient is dominant
and the moving wall below exerts a significant influence in delaying separation.
With increasing c, the spanwise adverse pressure gradient becomes progressively
more dominant and separation times and locations become comparable for each
value of c. In all cases, separation now occurs behind the vortex core as shown in
figure 13.

As in the case of κ > 0, the instantaneous streamline patterns on the symmetry plane
for the almost two-dimensional cases, show similar development to the corresponding
two-dimensional solutions of Doligalski & Walker (1984). Some typical results for
c = 0.1 and β = 0.2 are shown in figure 14, where it may be noted that the streamlines
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c β xs zs ts

0.1 0.2 −0.19 0.39 0.67
0.5 −0.26 0.37 0.69

0.2 0.2 −0.14 0.44 0.57
0.5 −0.19 0.43 0.57

0.5 0.2 0.13 0.40 0.28
0.5 0.06 0.41 0.28

1.0 0.2 0.50 0.39 0.13
0.5 0.52 0.38 0.13

Table 2. Calculated results for κ < 0.
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Figure 13. Projection on (x, z)-plane of the vortex core for (a) β = 0.2 and (b) β = 0.5
showing the separation location and the qn-direction for (i) c = 1.0, (ii) c = 0.5, (iii) c = 0.2,
(iv) c = 0.1.

on both planes are developing a spiky behaviour at t = ts . However, as indicated in
figure 13, separation actually occurs in the interior 0 <z < 1. The symmetry planes are
not, however, a reliable indicator of developing structure in the interior. In fact, for
many cases at larger values of c, there is no evidence of recirculation on the symmetry
planes at separation. Again the reliable precursor of separation is the intersection of
the two zero vorticity surfaces ωx = 0, ωz = 0.

For the negative rotation vortex, the conventional displacement thicknesses δ∗
x and

δ∗
z given by (6.8) cannot be defined. Considering the velocity components in the

boundary layer to be expressed in terms of functions ψ and φ according to (A 5), it
may be inferred that

ψ ∼ yU∞(x, z) − δ̃∗
x(x, z, t), φ ∼ yW∞(x, z) − δ̃∗

z (x, z, t) (6.9)

at the boundary-layer edge, where δ̃∗
x and δ̃∗

z are functions defined by

δ̃∗
x =

∫ ∞

0

(U∞ − u) dy, δ̃∗
z =

∫ ∞

0

(W∞ − w) dy. (6.10)
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Figure 14. The instantaneous streamlines on the symmetry plane for c =0.1 and β = 0.2;
z = 0 for (a) t = 0.1, (b) t =0.5, (c) ts = 0.67 and z = 1 for (d) t = 0.1, (e) t = 0.5, (f ) ts = 0.67.

In addition, at the boundary-layer edge

v ∼ −
(

∂U∞

∂x
+

∂W∞

∂z

)
y +

(
∂ δ̃∗

x

∂x
+

∂ δ̃∗
z

∂z

)
. (6.11)

The first term on the right-hand side of (6.11) is necessary to effect the matching to the
external flow, while the second is associated with the vertical velocity at the boundary-
layer edge induced by events taking place in the boundary layer. In Lagrangian
coordinates, the perturbation functions δ̃∗

x and δ̃∗
z can be computed at any instant

along the characteristics.
The development of boundary-layer growth is illustrated in figure 15. A large nega-

tive spike is observed to develop in the middle of the domain at (x̂s , zs) = (0.13, 0.40),
where the singular nature of the solution at ts =0.28 can be clearly seen in the side
view of δ̃∗

x . Similar behaviour was also observed for δ̃∗
z . It may be inferred from (6.11)

that this behaviour in δ̃∗
x and δ̃∗

z implies sharp focused outflow from the boundary
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Figure 15. The temporal development of the function δ̃∗
x for c = 0.5.

(a) t = 0.05, (b) 0.10, (c) 0.28.
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Figure 16. The level curves for δ̃∗
x in the (x, z)-plane at separation for c = 0.5.

layer; the spiky peaks of δ̃∗
x and δ̃∗

z occur in a narrow region where the streamlines
become significantly squeezed and spiky at ts = 0.28. Again the level contours shown
in figure 16 of δ̃∗

x (or δ̃∗
z ) reveal the q- and qn-directions.
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7. Conclusions
Numerical solutions have been obtained for the unsteady boundary layer induced

by an external mainstream flow that mimics a three-dimensional vortex of negative
and positive rotation, respectively, above an infinite wall. It has been shown that the
solution develops a separation singularity at a point in the (x, z)-plane and above the
wall. At separation, the boundary-layer flow focuses into a sharply eruptive spike at
a single point located on a ridge which generally lies at an angle to the x-axis; the
results imply a sharp focused outflow from the boundary layer at that location. The
characteristic feature of the development of the three-dimensional boundary-layer
flow toward separation is similar to that observed in two dimensions previously by
Van Dommelen & Shen (1980, 1982), Peridier et al. (1991) and Degani et al. (1998)
and is entirely consistent with the theoretical predictions of Van Dommelen & Cowley
(1990) and Van Dommelen (1991). Conclusions of the study are as follows:

(i) For a vortex of either positive or negative rotation, increasing the strength of
the external cross-flow hastened separation.

(ii) For the vortex of negative rotation, separation was delayed as the convection
speed of the vortex increased for small values of c, in agreement of the previous
two-dimensional studies of Doligalski & Walker (1984) and Degani et al. (1998); for
larger values of c the spanwise pressure gradient appears to be the dominant factor
in inducing separation.

(iii) The intersection of the zero vorticity surfaces is the most reliable indication
that a separation event is about to occur. Two-dimensional slices of the developing
flow do not appear to be a useful diagnostic tool.

Finally, the calculated results tend to support the conjectures of Smith et al. (1991)
and Smith & Walker (1997) concerning the process of how hairpin vortices can
be regenerated in a turbulent boundary layer. Here, it has been demonstrated how
a moving three-dimensional disturbance can provoke the occurrence of a sharply
focused thin eruptive tongue of fluid at separation. As this tongue penetrates toward
the outer inviscid flow region, an inviscid–viscous interaction will occur and the most
likely outcome of this interaction is a roll-up into a hairpin vortex. However, it must
be noted that theoretical descriptions of the unsteady viscous–inviscid interaction
process are complex (see, for example, Hoyle & Smith 1994; Li et al. 1998; Smith,
Bowles & Walker 2000) and the development of numerical algorithms that are cap-
able of computing such an interaction is, at this stage, a remote event in the future
(Walker 2003).

This work was supported by the Army Research Office under grant number 40019-
DAAD19-99-1-0244. The research was supported in part by grant number CTS010001
from the Pittsburg Supercomputing Center, supported by several federal agencies, the
Commomwealth of Pennsylvania and private industry. The authors would like to
thank Professor L. L. Van Dommelen for helpful suggestions and the referees for
their useful comments.

Appendix. Solution of the continuity equation
In order to view the Lagrangian results in the conventional Eulerian description of

the flow field, it is necessary to solve for y and v at any time step, as well as to deter-
mine if a singularity has evolved. In computational coordinates (ξ̂ , η̂, ζ ), the continuity
equation (4.3) becomes

Âŷξ̂ + B̂ŷη̂ + Ĉŷζ = D̂, (A 1)
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where

Â =
∂ x̂

∂ζ

∂z

∂η̂
− ∂ x̂

∂η̂

∂ z

∂ζ
, B̂ =

∂ x̂

∂ξ̂

∂ z

∂ζ
− ∂ x̂

∂ζ

∂z

∂ξ̂
, (A 2a)

Ĉ =
∂ x̂

∂η̂

∂ z

∂ξ̂
− ∂ x̂

∂ξ̂

∂ z

∂η̂
, D̂ =

{
cos(πx̂/2) cos(πŷ/2)

cos(πξ̂ /2) cos(πη̂/2)

}2

, (A 2b)

which is a first-order equation for ŷ. Here, x̂(ξ̂ , η̂, ζ, t) and z(ξ̂ , η̂, ζ, t) are known at
any instant t from a numerical solution of the Lagrangian boundary-layer equations
given in § 4. The characteristics are curves of x̂ and z constant, and the subsidiary
equations are

dξ̂

Â
=

dη̂

B̂
=

dζ

Ĉ
=

dŷ

D̂
= dŝ, (A 3)

where ŝ is a parameter denoting distance along the characteristics. A numerical
integration of (A 3) for ŷ is initiated at positions of ξ̂ and ζ on the wall at η̂ = ŷ = 0
in the mesh. For a specific fluid particle on the wall (i.e. at specified values of ξ̂ and
ζ ), the corresponding values of x and z are calculated from (4.6) in terms of the
computational variables defined by (4.22), where β = 1 for κ > 0 and is a specified
value for κ < 0.

Consider a specific location on the wall at ξ̂ = ξ̂0 and ζ = ζ0 which may or may not
be in the Lagrangian mesh. If the point is not in the mesh, bilinear interpolation can
be used to obtain the values of x̂(ξ̂ , η̂, ζ, t) and z(ξ̂ , η̂, ζ, t) at that point, since x̂ and
z are known at the four neighbouring mesh points on the wall. The integration of
(A 3) is advanced along the characteristics starting from the initial locations on the
wall

ξ̂ = ξ̂0, ζ = ζ0, η̂ = ŷ = 0 at ŝ = 0, (A 4)

using a straightforward generalization of a second-order accurate predictor–corrector
algorithm described by Peridier et al. (1991; see also Degani et al. 1998), which
generates points along the characteristics and the corresponding values of ŷ. The step
size �ŝ in the numerical algorithm is generally chosen small enough so that iteration
of the corrector formula is not necessary. Since points thus generated along the
characteristic curves do not coincide with the mesh grid points, a three-dimensional
linear interpolation (using neighbouring eight mesh points) was used to calculate the
required values of Â, B̂, Ĉ and D̂ at any stage (Kim 1999).

The normal velocity v can be computed by introducing the intermediate functions
ψ(x, y, z, t) and φ(x, y, z, t) defined by

u =
∂ψ

∂y
, v = −∂ψ

∂x
− ∂φ

∂z
, w =

∂φ

∂y
, (A 5a–c)

in order to satisfy the continuity equation (3.1c); ψ and φ can be evaluated in the
computational coordinates along the characteristic curves in a step-by-step manner.
Then, v may be obtained from (A 5b), once ψ and φ are defined at each point in a
three-dimensional mesh.

The same argument and procedure are applied to the problem for the symmetry
planes at z =0 and 1. In these symmetry planes, the continuity equation is given by
(4.13b) which is written as{

cos(πξ̂ /2) cos(πη̂/2)

cos(πx̂/2) cos(πŷ/2)

}2 [
∂ x̂

∂ξ̂

∂ ŷ

∂η̂
− ∂ x̂

∂η̂

∂ ŷ

∂ξ̂

]
= J2

(
=

1

z̃

)
(A 6)
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Figure 17. Three-dimensional mesh showing a stationary point S; (p, q, r) are the normalized
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in terms of the computational variables ξ̂ and η̂; the subsidiary equations along the
characteristic curves x̂ =constant are

dξ̂

Â
=

dη̂

B̂
=

dŷ

Ĉ
= dŝ, (A 7a)

Â = −∂ x̂

∂η̂
, B̂ =

∂ x̂

∂ξ̂
, Ĉ = J2

{
cos(πx̂/2) cos(πŷ/2)

cos(πξ̂ /2) cos(πη̂/2)

}2

. (A 7b)

For the normal velocity v, the two intermediate functions ψ(x, y, t) and φ(x, y, t) are
now defined as

u =
∂ψ

∂y
, v = −∂ψ

∂x
− φ, θ =

∂φ

∂y
, (A 8a–c)

which satisfy the continuity equation (3.9c) for the symmetry planes, where the
appropriate boundary conditions are

u = −1 for Γ > 0, u = −β for Γ < 0, (φ, ψ, v, θ) = 0 at y = η = 0. (A 9)

Once the two intermediate functions ψ and φ are calculated in a fashion similar to
the three-dimensional case along the characteristic curves associated with computing
y, the normal velocity v is defined by (A 8b) throughout the symmetry planes at z =0
and 1.

At each time step, it is necessary to check for the occurrence of a singularity in the
interior and on the symmetry planes. A singularity occurs in the interior if

Â = B̂ = Ĉ = 0 at (ξ̂ , η̂, ζ, t) = (ξ̂s , η̂s, ζs, ts), (A 10)

where Â, B̂, Ĉ and D̂ are defined in (A 2). Similarly, a singularity occurs on either
symmetry plane if Â= B̂ = 0 in (A 7). At any instant t , the entire computational
domain must be examined to see if there is a location where Â, B̂ and Ĉ vanish
simultaneously. A typical three-dimensional mesh cell is shown in figure 17. When a
stationary point S develops somewhere inside the cell at time t = ts , all three surfaces
Â =0, B̂ = 0 and Ĉ = 0 touch one another at the location called S. The exact location
of S in a three-dimensional mesh will be determined in terms of the normalized local
coordinates (p, q, r) shown in the figure 17, where 0 � (p, q, r) � 1; the stationary
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(a)                                                                  (b)

(c)                                                                   (d )
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Figure 18. Illustrations of the four possible situations for a surface f = 0 passing through a
cell, i.e. a plane intersecting the edges at three, four, five and six points.

point developed at S has the following coordinates

ξ̂s = ξ̂i + ps�ξ̂, η̂s = η̂j + qs�η̂, ζs = ζk + rs�ζ. (A 11)

Let f (ξ̂ , η̂, ζ̂ ) denote any of the surfaces Â, B̂ and Ĉ. Consider then the various
possible situations for which the surface f =0 can pass through a cell in the three-
dimensional mesh. It is assumed that the mesh is sufficiently small so that the surface
f = 0 may be approximated by a plane within the cell. Thus, situations where the
surface bends over on itself within an individual cell are excluded from consideration.
To determine if the surface f = 0 passes through a given cell, it is useful to examine
whether a change in the sign of f occurs along each edge of the cell, as previously
done by Degani et al. (1998) for two-dimensional cells. The maximum number of
intersections that can be made by f = 0 along edges of a cell is six and the minimum
number of intersections is three (see figure 18).

Suppose that a portion of the surface f =0 passes into a cell in the three-
dimensional mesh, making three intersections with the edges, as depicted figure 18(a).
Let these three points be denoted by P1 = (p1, q1, r1), P2 = (p2, q2, r2) and P3 =
(p3, q3, r3), respectively. The equation of a plane passing through three points
(P1, P2, P3) in normalized coordinates (p, q, r) is

n1(p − p1) + n2(q − q1) + n3(r − r1) = 0, (A 12)

where (n1, n2, n3) are the normals to the plane and defined by

n1 =

∣∣∣∣q2 − q1 r2 − r1

q3 − q1 r3 − r1

∣∣∣∣, n2 =

∣∣∣∣r2 − r1 p2 − p1

r3 − r1 p3 − p1

∣∣∣∣, n3 =

∣∣∣∣p2 − p1 q2 − q1

p3 − p1 q3 − q1

∣∣∣∣. (A 13)

Equation (A 12) can be rewritten in the form

(p − p1) + ñ2(q − q1) + ñ3(r − r1) = 0, (A 14)

where ñ2 = n2/n1 and ñ3 = n3/n1. An intersection is detected along an edge of a cell if
the product of f with itself evaluated at each corner is negative. The coordinates of
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the intersection are then easily obtained. For example, the coordinates of P1, P2 and
P3 shown in figure 18(a) are

P1 : p1 =
fi,j+1,k

fi,j+1,k − fi+1,j+1,k

, q1 = 1.0, r1 = 0, (A 15a)

for fi,j+1,kfi+1,j+1,k < 0,

P2 : p2 = 1.0, q2 = 1.0, r2 =
fi+1,j+1,k

fi+1,j+1,k − fi+1,j+1,k+1

, (A 15b)

for fi+1,j+1,kfi+1,j+1,k+1 < 0, and

P3 : p3 = 1.0, q3 =
fi+1,j,k

fi+1,j,k − fi+1,j+1,k

, r3 = 0, (A 15c)

for fi+1,j,kfi+1,j+1,k < 0. If four or more intersections are detected (i.e. P1 = (p1, q1, r1),
P2 = (p2, q2, r2), P3 = (p3, q3, r3), P4 = (p4, q4, r4), · · ·) in a cell, an approximate plane is
defined using average values of the normals. For four intersections (i.e. P1, P2, P3, P4),
for example, a first set of normals, i.e. (n1a, n2a, n3a), is obtained from the three
points (P1, P2, P3) and a second set of normals, i.e. (n1b, n2b, n3b), is similarly obtained
from the three points (P1, P2, P4). Here, (n1a, n2a, n3a) are given by (A 13) while
(n1b, n2b, n3b) are obtained from the same equation, but with (p3, q3, r3) replaced by
(p4, q4, r4). Average normals to the plane are then defined by

ñ2 = 1
2
(ñ2a + ñ2b), ñ3 = 1

2
(ñ3a + ñ3b) (A 16a)

where

ñ2a =
n2a

n1a

, ñ3a =
n3a

n1a

; ñ2b =
n2b

n1b

, ñ3b =
n3b

n1b

, (A 16b)

for which (A 14) still holds. Similarly, an approximate plane is defined for a cell
having five or six intersections.

A singular point is located when (A 14) holds for all three surfaces Â=0, B̂ =0
and Ĉ = 0 simultaneously at a point in the cell, i.e. when

(p − p1,Â) + ñ2,Â(q − q1,Â) + ñ3,Â(r − r1,Â) = 0, (A 17a)

(p − p1,B̂) + ñ2,B̂(q − q1,B̂) + ñ3,B̂(r − r1,B̂) = 0, (A 17b)

(p − p1,Ĉ) + ñ2,Ĉ(q − q1,Ĉ) + ñ3,Ĉ(r − r1,Ĉ) = 0, (A 17c)

are satisfied and 0 � (p, q, r) � 1 at that point. To check for the presence of a
singularity and compute the normalized coordinates, (A 17) must be solved for (p, q, r)
at any instant. If the calculated values of (p, q, r) are all less than 1, then a singularity
has been detected in that cell.

REFERENCES

Adams, E. C., Conlisk, A. T. & Smith, F. T. 1995 Adaptive grid scheme for vortex-induced boundary
layers. AIAA J. 33, 864–870.

Atik, H. 2002 Boundary-layer separation and control. PhD thesis, Lehigh University.

Cowley, S. J., Van Dommelen, L. & Lam, S. T. 1990 On the use of Lagrangian variables in
descriptions of unsteady boundary-layer separation. Phil. Trans. R. Soc. Lond. A 333, 343–
378.

Dallmann 1988 Three-dimensional vortex structures and vorticity toplogy. Japan. Soc. Fluid Dyn.,
Fluid Dyn. Res. 3, 183–189.



46 H. Atik, C. Y. Kim and J. D. A. Walker

Degani, A. T., Walker, J. D. A. & Smith, F. T. 1998 Unsteady separation past moving surfaces.
J. Fluid Mech. 375, 1–38.

Dhanak, M. R. & DeBernardinis, B. 1981 The evolution of an elliptic voretx ring. J. Fluid Mech.
109, 189–216.

Doligalski, T. L. & Walker, J. D. A. 1984 The boundary layer induced by a convected vortex.
J. Fluid Mech. 139, 1–28.

Elliott, J. W., Cowley, S. J. & Smith, F. T. 1983 Breakdown of boundary layers: (i) on moving
surfaces; (ii) in semi-similar flow; (iii) in fully unsteady flow. Geophys. Astrophys. Fluid Dyn.
25, 77–138.

Ersoy, S. & Walker, J. D. A. 1987 The boundary layer due to a three-dimensional vortex loop.
J. Fluid Mech. 185, 569–598.

Head, M. R. & Bandyophadyay, P. 1981 New aspects of turbulent boundary-layer structure.
J. Fluid Mech. 107, 297–337.

Hon, L.-T. & Walker, J. D. A. 1991 Evolution of a hairpin vortex in a shear flow. Computers Fluids
20, 343–358.

Hoyle, J. M. & Smith, F. T. 1994 On finite-time break-up in three dimensional unsteady interacting
boundary layers. Proc. R. Soc. Lond. A 447, 467–492.

Kim, C.-Y. 1999 Unsteady separation phenomena in two- and three-dimensional boundary-layer
flows. PhD thesis, Lehigh University.

Leonard, A. 1980 Vortex methods in flow simulation. J. Comput. Phys. 37, 289–335.

Li, L., Walker, J. D. A., Bowles, R. I. & Smith, F. T. 1998 Sort-scale break-up in unsteady
interactive layers: local development of normal pressure graidents and vortex wind-up.
J. Fluid Mech. 374, 335–378.

Moore, D. W. 1972 Finite amplitude waves on aircraft trailing vortices. Aero. Q. 23, 307–314.

Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991 Vortex-induced boundary-layer separation.
Part 1. The unsteady limit problem. J. Fluid Mech. 232, 91–131.

Puhak, R. I., Degani, A. T. & Walker, J. D. A. 1995 Unsteady separation and heat transfer
upstream of obstacles. J. Fluid Mech. 305, 1–27.

Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech.
23, 601–639.

Smith, C. R. & Walker, J. D. A. 1997 Sustaining mechanisms of turbulent boundary layers: the
role of vortex development and interaction. In Sustaining Mechanisms of Wall Turbulence
(ed. R. L. Panton), pp. 13–39. Computational Mechanics Publications, Southampton.

Smith, C. R., Walker, J. D. A., Haidairi, A. H. & Sobrun, U. 1991 On the dynamics of near-wall
turbulence. Phil. Trans. R. Soc. Lond. A 336, 131–175.

Smith, F. T., Bowles, R. I. & Walker, J. D. A. 2000 Wind-up of a spanwise vortex in deepening
transition and stall. Theoret. Comput. Fluid Dyn. 14, 135–165.

Smith, F. T. & Burggraf, O. R. 1985 On the development of large-sized short-scaled disturbances
in boundary layers. Proc. R. Soc. Lond. A 339, 25–55.

Tobak, M. & Peake, D. J. 1982 Topology of three-dimensional separated flows. Annu. Rev. Fluid
Mech. 14, 61–85.

Van Dommelen, L. L. 1991 Lagrangian description of unsteady separation. Lect. Appl. Maths 28,
701–718.

Van Dommelen, L. L. & Cowley, S. J. 1990 On the Lagrangian description of unsteady boundary-
layer separation. Part 1. General theory. J. Fluid Mech. 220, 593–626.

Van Dommelen, L. L. & Shen, S. F. 1980 The spontaneous generation of a singularity in a
separating boundary layer. J. Comput. Phys. 38, 125–140.

Van Dommelen, L. L. & Shen, S. F. 1982 The genesis of separation. In Symposium on Numerical
and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci), pp. 293–311. Springer.

Walker, J. D. A. 1978 The boundary layer due to a rectilinear vortex. Proc. R. Soc. Lond. A 359,
167–188.

Walker, J. D. A. 2003 Unsteady separation processes at high Reynolds numbers and their control.
J. Flow Turbulence Combust. (to appear).

Xiao, Z., Burggraf, O. R. & Conlisk, A. T. 1997 The interacting boundary-layer flow due to a
vortex approaching a cylinder. J. Fluid Mech. 346, 319–343.


